

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL PHYSICS - COMPONENT 2 A420U20-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A LEVEL COMPONENT 2 – ELECTRICITY AND THE UNIVERSE

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (except for the extended response question).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao=correct answer onlyecf=error carried forwardbod=benefit of doubt

	Questi		Marking dataila			Marks a	vailable		
6	luesu	n	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)		<i>V</i> - Energy (per coulomb or unit charge) used in external resistor/circuit [1] <i>E</i> - Energy (per coulomb/unit charge) transferred by source [or from chemical energy or from other forms] or used in whole circuit [1] <i>Ir</i> – energy (per coulomb/unit charge) wasted/lost in source or due to internal resistance [1] Use of 'per coulomb' or 'unit charge' at least once [1]	4			4		
	<i>(b)</i>	(i)	Circuit current = $\frac{1050 \times 10^{-3}}{2.5}$ = 0.42 [A] [1] Total internal resistance = $\frac{0.5}{0.42}$ = 1.2 [Ω] ecf on <i>I</i> [1] r_{cell} = 0.6 [Ω] [1]		3		3	2	
		(ii)	Substitution into I^2rt i.e. $(0.42)^2 \times 0.6 \times 60$ (ecf on <i>I</i> , <i>r</i>) [1] Alternative: Substitution into $\frac{V^2t}{r}$ i.e. $\frac{(0.25)^2 \times 60}{0.6}$ (ecf on <i>V</i> , <i>r</i>) Alternative: Substitution into <i>IVt</i> i.e. $0.42 \times 0.25 \times 60$ (ecf on <i>I</i> , <i>V</i>) Energy dissipated = 6.3 [J] [N.B. Alternative \rightarrow 6.4 J] [1]	1	1		2	1	

Question	Marking details			Marks a	vailable		
Question		A01	AO2	AO3	Total	Maths	Prac
	Either : Total resistance of coils in parallel = 2.975 [Ω] [1] and total circuit resistance = 4.175 [Ω] ecf [1] New current in circuit = $\frac{3}{4.175}$ = 0.72 [A] [1] For the 4th mark : Rate of energy dissipation in each cell = (0.72) ² × 0.6 = 0.31 [W] so Kiera correct (or ratio calculated to be approx. 3) Or Energy dissipated in each cell in one minute = (0.72) ² × 0.6 × 60 = 18.6 [J] so Kiera correct (or ratio calculated to be approx. 3) [1] Alternative: Total resistance of coils in parallel = 2.975 [Ω] [1] and total circuit resistance = 4.175 [Ω] ecf [1] New current = 0.72 [A] and pd drop across internal resistance = 0.72 × 1.2 = 0.86 [V] [1] Rate of energy dissipation in each cell For the 4th mark : = $\frac{(0.43)^2}{0.6}$ = 0.31 [W] so Kiera correct (or ratio calculated to be approx. 3)			4	4		
	Or Energy dissipated in each cell in one minute $=\frac{(0.43)^2 \times 60}{0.6} = 18.6 \text{ [J] so Kiera correct (or ratio calculated to be approx. 3) [1]}$						
	Question 1 total	5	4	4	13	3	0

	Question		Marking details	Marks available						
	Ruesi	lion	Marking uetails	AO1	AO2	AO3	Total	Maths	Prac	
2	(a)		Varies value of variable resistor			1	1		1	
	(b)		Correct attempt e.g. $\ln R = \ln(kV^n)$ or $\ln R = \ln k + \ln V^n$ [or using							
			\log_e or using \log_{10} [1]							
			Correct expression $\ln R = n \ln V + \ln k$ [or using \log_e or using		2		2	2	2	
			\log_{10} [1]		2		2	2	Z	

Question	on Marking details							Marks a	vailable		
Question		Wark	ing details			AO1	AO2	AO3	Total	Maths	Prac
(C)											
	V/V I	/ A R / Ω	$\ln(V/V)$	$\ln(R/\Omega)$							
	1.00 0	.52 1.9(2)	0.00	0.65							
	2.00 0	.72 2.78 or 2	2.8 0.69	1.02							
		.98 4.08 or 4		1.41							
		.20 5.00	1.79	1.61	_						
		.40 5.7(1)		1.74	_						
	10.00 1	.54 6.49 or 6	6.5 2.30	1.87							
	Image: values [1] Log10(V/V)	and all R and \ln Log ₁₀ (R/Ω)									
	0.00	0.28									
	0.30	0.45									
	0.60	0.61									
	0.78	0.70									
	0.90	0.76									
	1.00	0.81									
	Accept 2 or 3 10.00 V (= 2.3	sig figs in all ca 302) [1]	ses. Accept 4 sig	g. Figs for In	. V at		3		3	3	3

Question	Marking details		Marks available						
Lucstion		AO1	AO2	AO3	Total	Maths	Prac		
(d)	Axes labelled either with no units i.e. $\ln R$ (or $\log_{10}R$) on <i>y</i> -axis and $\ln V$ (or $\log_{10}V$) on <i>x</i> -axis, or with $\ln (R/\Omega)$ and $\ln (V/V)$ respectively (or equivalent using) [1] Suitable scale e.g. large block – 0.2 on <i>y</i> -axis and 0.4 on <i>x</i> -axis for In values and 0.2 on <i>x</i> -axis and 0.1 on <i>y</i> -axis on both axes for \log_{10} values. [Linear, scales, with points occupying \ge half available space] [1] All points plotted correctly within ±< small square division [2] 5 points plotted correctly within ±< small square division [1] 4 or less points plotted correctly within ±< small square division [1] e.g. for ln graph: $\log R$		5		5	4	5		

Ouest	lon	Marking dataila			Marks a	vailable		
Quest	.1011	Marking details	A01	AO2	AO3	Total	Maths	Prac
(e)	(i)	Attempt at taking gradient [1] $n = \frac{(2.0 - 0.65)}{2.5} = 0.5[4]$ [1] [answer gains both marks]	1	1				
		ln $k = 0.65$ or $k = e^{0.65}$ [1] k = 1.9[2] [1] [answer gains both marks] N.B. ecf from graph for both values. Mark scheme to be applied as above for candidates using log_{10} values.	1	1		4	3	4
	(ii)	$R = 1.9 V^{0.5}$ (ecf on <i>n</i> and <i>k</i>)	1			1	1	1
(f)		Required statement: Results lie close to line of best fit suggests good quality Accept: results fit with the expected theory Don't accept it's a straight line or reference to measuring instruments			1	1		1
		Question 2 total	3	12	2	17	13	17

	0	lon	Marking dataila			Marks a	vailable		
	Quest	.1011	Marking details	AO1	AO2	AO3	Total	Maths	Prac
3	(a)		 Plates of X are closer together (than plates of Y) or vice-versa [1] X contains dielectric (or space between plates of X contains material of higher permittivity) or vice-versa [1] Accept: Overlap of plates in X > overlap of plates in Y 	2			2		
	<i>(b)</i>	(i)	Series combination: Substitution $-\frac{1}{C_{\text{series}}} = \frac{1}{20 [\mu\text{F}]} + \frac{1}{30 [\mu\text{F}]} \text{ or } C_{\text{series}} = \frac{20 \times 30}{20 + 30} [\mu\text{F}] [1]$ $C_{\text{series}} = 12 \mu\text{[F]} [1]$ Total capacitance = 52 $\mu\text{[F]} [1]$	1	1		3	2	
		(ii)	Idea that Q is same on both capacitors, either stated or e.g. $C \propto \frac{1}{V}$ [1] 20 [× 10 ⁻⁶] × pd across C_2 = 30 [× 10 ⁻⁶] × pd across C_3 [1] [Both marks can be awarded if this seen]	1	1		2	1	
		(iii)	40 [V]		1		1	1	
		(iv)	C_1 stores the greatest charge with explanation: Largest capacitance and greatest pd across it [1] $Q = 40 \times 10^{-6} \times 100 = 0.004$ [C] [1]	1	1		2	1	

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(C)	Substitution: $E = \frac{1}{2} \times 1.6 \times 10^{-3} \times (300)^{2} [1]$ $E = 72 [J] [1]$ Energy gained by Al block = $mc\Delta\theta$ or substitution seen i.e. $E = 0.1 \times 910 \times 0.6 [1]$ $E = 54.6 [J] [1]$ Efficiency (%) = $\frac{54.6\text{ecf} \times 100}{72\text{ecf}} = 75.8 \%$ \therefore Not justified / criteria not met [1]			5	5	3	
	Question 3 total	6	4	5	15	8	0

		lon	Mayking dataila			Marks a	vailable		
, c	Quest	ion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)		Indicative content:	6			6		
			Description:						
			D1: At very low temperatures resistance of superconductor is						
			zero ohms						
			D2: Reference to transition temperature or critical						
			temperature						
			D3:where resistance suddenly drops to zero as temperature						
			drops (or jumps up from zero as temperature rises)						
			D4: Above transition temperature resistance increases with						
			temperature						
			D5 : This increase in resistance with temperature is						
			[approximately] linear						
			[Sketch graph can show some of these points]						
			Explanation:						
			No explanation required for superconducting state.						
			Above transition temperature:						
			E1: As temperature increases, the ions in the metal lattice						
			vibrate more quickly						
			E2: Which makes it more likely that an electron will interact						
			(accept collide) with the ion						
			E3: So electrons lose kinetic energy and the drift velocity						
			decreases						
			E4:and collisions will cause ions to gain kinetic energy						
			making further collisions more likely						

Overtien	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	5-6 marks						
	Comprehensive description and explanation provided.						
	There is a sustained line of reasoning which is coherent,						
	relevant, substantiated and logically structured.						
	3-4 marks						
	Comprehensive description or explanation provided or limited						
	attempt at both description and explanation.						
	There is a line of reasoning which is partially coherent, largely						
	relevant, supported by some evidence and with some structure.						
	1-2 marks						
	Limited attempt at description or explanation.						
	There is a basic line of reasoning which is not coherent, largely						
	irrelevant, supported by limited evidence and with very little						
	structure.						
	0 marks						
	No attempt made or no response worthy of credit.						

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	One benefit to society given for each application:			3	3		
	 Particle accelerator 1 × (1) from: Improve understanding of the nature of particles, Skilled workforce opportunities Have led to more powerful computing Particle discoveries used in everyday applications e.g. TV sets Well-reasoned economic benefits MRI scanner 1 × (1) from: Improved diagnoses and treatment of many ailments Skilled workforce opportunities Benefits more people Reasoned choice of application [1] 						
	Question 4 total	6	0	3	9	0	0

	Quest	ion	Marking details		Marks available						
	Quest		Marking details	AO1	AO2	AO3	Total	Maths	Prac		
5	(a)	(i)	$\Delta x_{\text{total}} = \Delta x_A + \Delta x_{3A}$ (or by implication) [1]								
			$\Delta x_{\text{total}} = \frac{FL_0}{AE} + \frac{FL_0}{3AE} $ [1]								
			Convincing algebra e.g. $\frac{3FL_0}{3AE} + \frac{FL_0}{3AE}$ seen [1]		3		3	2			
		(ii)	Straight line from origin to (400 N, 4.0×10^{-6} m)		1		1				

Question	Marking dataila	Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
Question (iii) (iii)	Marking detailsUsing combination: $Y = \frac{4FL_0}{3A\Delta x_{total}}$ and $\Delta x_{total} = 16 \times 10^{-6}$ [m] [1]Substitution - $E = \frac{4 \times 400 \times 1.2}{3 \times 2 \times 10^4 \times 16 \times 10^{-6}}$ [1] (gains first and second marks)E = 2 × 10 ¹¹ Nm ⁻² or Pa unit mark [1]Using bar of CSA A: $E = \frac{FL_0}{A\Delta x_A}$ and $\Delta x_A = 12 \times 10^{-6}$ [m] [1]Substitution - $E = \frac{400 \times 1.2}{2 \times 10^4 \times 12 \times 10^{-6}}$ [1](gains first and second marks) $Y = 2 \times 10^{11}$ Nm ⁻² or Pa unit mark [1]Using bar of CSA 3A: - ecf $E = \frac{FL_0}{3A\Delta x_{3A}}$ and $\Delta x_{3A} = 4 \times 10^{-6}$ [m] [1]	AO1	AO2 3		1	Maths 3	Prac		
	$E = \frac{0}{3A\Delta x_{3A}} \text{ and } \Delta x_{3A} = 4 \times 10^{-6} \text{ [m] [1]}$ Substitution - $E = \frac{400 \times 1.2}{3 \times 2 \times 10^{-4} \times 4 \times 10^{-6}} \text{[1](gains first and second marks)}$ $E = 2 \times 10^{11} \text{ Nm}^{-2} \text{ or Pa unit mark [1]}$								

0	tion	Marking datails	Marks available							
Quest	lion	Marking details		AO2	AO3	Total	Maths	Prac		
	(iv)	$E_{\text{elastic}} = \frac{1}{2} F x_{\text{total}} \text{ and substitution: } E = \frac{1}{2} \times 400 \times 16 \times 10^{-6} \text{ [1]}$ E = 3.2 m[J] [1]		1		2	2			
		Alternative: $E_{\text{elastic}} = \frac{2F^2 L_0}{3AE} \text{ used with substitution: } E_{\text{elastic}} = \frac{2 \times (400^2) \times 1.2}{3 \times 2 \times 10^{-4} \times 2 \times 10^{11}} [1]$ $E_{\text{elastic}} = 3.2 \text{ m[J] [1]}$								
		Alternative: Area under graphs - ecf $\frac{1}{2} \times 4 \times 10^{-6} \times 400 + \frac{1}{2} \times 12 \times 10^{-6} \times 400$ [1] $E_{\text{elastic}} = 3.2 \text{ m[J] [1]}$								
(b)	(i)	From graph, stress = 2.2×10^9 Pa [1] $F = 2.2 \times 10^9 \times \pi \times (0.1 \times 10^{-3})^2 = 69$ [N] [1] ecf for 2.1×10^9 Pa Mass = $\frac{69}{9.81}$ = 7.0 k[g] [1]		3		3	2			
	(ii)	Crack propagation [around surface imperfection] - no details in terms of breaking bonds needed [1] Thinner fibre contains fewer surface imperfections [1] (mention of 'surface' required only once)	2			2				
		Question 5 total	3	11	0	14	9	0		

Question			Marking datails	Marks available							
		n	Marking details	A01	AO2	AO3	Total	Maths	Prac		
6	(a)		$V \propto \frac{1}{r}$ or equivalent or $\frac{-0.72 \times 10^6}{3}$ seen (accept 0.73) [1] V shown as -0.24×10^6 [J kg ⁻¹] [1] Accept answers based on determination of			2	2	1			
	(b)	(i)	Substitution: $E_P = 600 \times [-] 0.72 \times 10^6 [1]$ $E_P = [-] 4.3 \times 10^8 [J] [1]$	1	1		2	1			
		(ii)	Concept: $E_k = -E_P$ or equivalent [1] Substitution: $4.3 \times 10^8 \text{ ecf} = \frac{1}{2} \times 600 \times v^2$ or $v = \sqrt{2 \times 0.72 \times 10^6}$ [1] $v = 1.2 \text{ k[m s}^{-1}$] [1]		3		3	2			
	(C)		Equation used to show that <i>g</i> at 2 <i>r</i> should be ¼ of surface value or determined i.e. <i>g</i> at 2 <i>r</i> = 0.15(5) N kg ⁻¹ or $gr^2 = k$ or equation used to calculate mass of Pluto [1] Good tangent [1] Gradient calculated e.g. $\frac{0.56 \times 10^6}{3 \times 1.18 \times 10^6} = 0.15[8]$ (approx.) [1] Appropriate comment or analysis to show that $g \propto \frac{1}{r^2}$ [1]			4	4	3			
			Question 6 total	1	4	6	11	7	0		

	Question		Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac	
7	(a)	(i)	Substitution:							
			$T = 2\pi \sqrt{\frac{\left(5.2 \times 10^9\right)^3}{6.67 \times 10^{-11} \times 6.2 \times 10^{28}}}$							
			[or mass on bottom line = $(6.0 \times 10^{28} + 2.0 \times 10^{27})$] [1]	1						
			$T = 1.16 \times 10^{6} \text{ [s] [1]}$		1		2	1		
			If mass of planet ignored \rightarrow T = 1.18 × 10 ⁶ [s] award 1 mark							
		(ii)	Substitution:							
			$r = \frac{2 \times 10^{27} \times 5.2 \times 10^{9}}{6.2 \times 10^{28}} [1]$ r = 1.68 × 10 ⁸ [m] accept 1.7 × 10 ⁸ [m] [1]	1	1		2	1		

Question	Marking dataila	Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
(b)	Use of (a)(i) and (ii) ecf - $v_{star} = \frac{2\pi \times 1.68 \times 10^8}{1.16 \times 10^6}$ [1] $v_{star} = 910 \text{ [m s}^{-1}\text{]}$ [1] Use of Doppler shift: Either: $\Delta \lambda = \frac{910 \times 656.3 \times 10^{-9}}{3 \times 10^8}$ [m] or $\Delta \lambda = \frac{910 \times 656.3}{3 \times 10^8}$ n[m] [1] $\Delta \lambda \approx 1.99 \text{ p[m] seen } \therefore \text{ consistent [1]}$ Or: $v_{star} = \frac{2 \times 10^{-12} \times 3 \times 10^8}{656.3 \times 10^{-9}}$ [1] $v_{star} = 914 \text{ [m s}^{-1}\text{]} \therefore \text{ consistent [1]}$			4	4	3			
(C)	Planet moves in front of star			1	1				
	Question 7 total	2	2	5	9	5	0		

	Question		Marking dataila	Marks available						
	Quesi	.1011	Marking details		AO2	AO3	Total	Maths	Prac	
8	(a)		 Similarity: Both are vectors or both obey inverse square law or both have infinite range [1] Difference: Gravitational fields are attractive only, whereas electric fields can be attractive or repulsive. Or gravitational fields act on masses, electric fields act on charges. Accept, gravitational field is much weaker than electric field [1] 	2			2			
	(b)	b) (i) Substitution and answer $W = mg = 9.4 \times 10^{-14}$ [N] [1] Substitution $E = \frac{V}{d} = \frac{150}{5.0 \times 10^{-2}}$ [1] Substitution and answer $F_E = Eq = 7.2 \times 10^{-14}$ [N] [1]		1	1		3	2		
	(ii) $F_E = 7.2 \times 10^{-14} [\text{N}]$ $W = 9.4 \times 10^{-14} [\text{N}]$ F_E and W vectors correctly drawn and labelled (including directions) [1] Resultant direction of movement shown - no precision required and ecf if F_E vector drawn to the right [1] $\theta = 52.5^\circ$ or $\alpha = 37.5^\circ$ calculated and shown on diagram (or equivalent, e.g. bearing 217.5° stated) [1] Accept scale drawings		1	1		3	3			

Question	Marking details	Marks available							
Question		A01	AO2	AO3	Total	Maths	Prac		
(C)	$F_{\text{res}} = \sqrt{\left(9.4 \times 10^{-14}\right)^2 + \left(7.2 \times 10^{-14}\right)^2} \text{ or } F_{\text{res}} = 1.18 \times 10^{-13} \text{ [N] seen}$ or in (b)(ii) [1] $a \left[= \frac{F}{m} \right] = \frac{1.18 \times 10^{-13}}{9.6 \times 10^{-15}} \text{ or } a = 12.3 \text{ [ms}^{-2}\text{] seen [1]}$								
	$u \begin{bmatrix} -t \\ m \end{bmatrix}^{-1} 9.6 \times 10^{-15} \text{ or } u = 12.0 \text{ [ms -] Sectr [1]}$ Substitution and rearrangement of $x = \frac{1}{2}at^{2}$ i.e. $t^{2} = \frac{0.04}{12.3}$ [1] t = 0.06 [s] Accept 0.057 [s] [1]		4		4	3			
	Question 8 total	4	8	0	12	8	0		

A LEVEL COMPONENT 2: ELECTRICITY AND THE UNIVERSE

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	5	4	4	13	3	0
2	3	12	2	17	13	17
3	6	4	5	15	8	0
4	6	0	3	9	0	0
5	3	11	0	14	9	0
6	1	4	6	11	7	0
7	2	2	5	9	5	0
8	4	8	0	12	8	0
TOTAL	30	45	25	100	53	17

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

A420U20-1 EDUQAS GCE A Level Physics - Comp 2 MS S19/DM